
CredShields

Smart Contract Audit
________

July 15th, 2024 • CONFIDENTIAL

Description

This document details the process and result of the Smart Contract audit performed by

CredShields Technologies PTE. LTD. on behalf of Asset Chain between June 5th, 2024, and

June 12th, 2024. And a retest was performed on June 12th, 2024.

Author

Shashank (Co-founder, CredShields)

shashank@CredShields.com

Reviewers

Aditya Dixit (Research Team Lead)

Naman Jain (Auditor)

Prepared for

Asset Chain



Table of Contents

1. Executive Summary 2
State of Security 3

2. Methodology 4
2.1 Preparation phase 4

2.1.1 Scope 5
2.1.2 Documentation 5
2.1.3 Audit Goals 5

2.2 Retesting phase 6
2.3 Vulnerability classification and severity 6
2.4 CredShields staff 9

3. Findings 10
3.1 Findings Overview 10

3.1.1 Vulnerability Summary 10
3.1.2 Findings Summary 11

4. Remediation Status 14
5. Bug Reports 15

Bug ID #1 [Won’t Fix] 15
Use Ownable2Step 15

6. Disclosure 17

1



1. Executive Summary
______

Asset Chain engaged CredShields to perform a smart contract audit from June 5th, 2024, to

June 12th, 2024. During this timeframe, One (1) vulnerabilities were identified. A retest

was performed on June 12th, 2024, and all the bugs have been addressed.

During the audit, Zero (0) vulnerabilities were found with a severity rating of either High or

Critical. These vulnerabilities represent the greatest immediate risk to "Asset Chain" and

should be prioritized for remediation, and fortunately, none were found.

The table below shows the in-scope assets and a breakdown of findings by severity per

asset. Section 2.3 contains more information on how severity is calculated.

Assets in Scope Critical High Medium Low info Gas Σ

Smart Contract 0 0 0 1 0 0 1

0 0 0 1 0 0 1

Table: Vulnerabilities Per Asset in Scope

The CredShields team conducted the security audit to focus on identifying vulnerabilities in

Smart Contract’s scope during the testing window while abiding by the policies set forth by

Asset Chains’s team.

2



State of Security

To maintain a robust security posture, it is essential to continuously review and improve

upon current security processes. Utilizing CredShields' continuous audit feature allows

both Asset Chain's internal security and development teams to not only identify specific

vulnerabilities, but also gain a deeper understanding of the current security threat

landscape.

To ensure that vulnerabilities are not introduced when new features are added, or code is

refactored, we recommend conducting regular security assessments. Additionally, by

analyzing the root cause of resolved vulnerabilities, the internal teams at Asset Chain can

implement both manual and automated procedures to eliminate entire classes of

vulnerabilities in the future. By taking a proactive approach, Asset Chain can future-proof

its security posture and protect its assets.

3



2. Methodology
______

Asset Chain engaged CredShields to perform Asset Chain Smart Contract audit. The

following sections cover how the engagement was put together and executed.

2.1 Preparation phase

The CredShields team meticulously reviewed all provided documents and comments in the

smart-contract code to gain a thorough understanding of the contract's features and

functionalities. They meticulously examined all functions and created a mind map to

systematically identify potential security vulnerabilities, prioritizing those that were more

critical and business-sensitive for the refactored code. To confirm their findings, the team

deployed a self-hosted version of the smart contract and performed verifications and

validations during the audit phase.

A testing window from June 5th, 2024, to June 12th, 2024, was agreed upon during the

preparation phase.

4



2.1.1 Scope

During the preparation phase, the following scope for the engagement was agreed-upon:

IN SCOPE ASSETS

https://bscscan.com/address/0xfe9bd67eb9525d4981ad2291d7261501782da24c#cod
e

Table: List of Files in Scope

2.1.2 Documentation

Documentation was not required as the code was self-sufficient for understanding

the project.

2.1.3 Audit Goals

CredShields uses both in-house tools and manual methods for comprehensive smart

contract security auditing. The majority of the audit is done by manually reviewing the

contract source code, following SWC registry standards, and an extended industry standard

self-developed checklist. The team places emphasis on understanding core concepts,

preparing test cases, and evaluating business logic for potential vulnerabilities.

5

https://bscscan.com/address/0xfe9bd67eb9525d4981ad2291d7261501782da24c#code
https://bscscan.com/address/0xfe9bd67eb9525d4981ad2291d7261501782da24c#code


2.2 Retesting phase

Asset Chain is actively partnering with CredShields to validate the remediations

implemented towards the discovered vulnerabilities.

2.3 Vulnerability classification and severity

CredShields follows OWASP's Risk Rating Methodology to determine the risk associated

with discovered vulnerabilities. This approach considers two factors - Likelihood and Impact

- which are evaluated with three possible values - Low, Medium, and High, based on

factors such as Threat agents, Vulnerability factors, Technical and Business Impacts. The

overall severity of the risk is calculated by combining the likelihood and impact estimates.

Overall, the categories can be defined as described below -

1. Informational

We prioritize technical excellence and pay attention to detail in our coding practices.

Our guidelines, standards, and best practices help ensure software stability and

reliability. Informational vulnerabilities are opportunities for improvement and do

6



not pose a direct risk to the contract. Code maintainers should use their own

judgment on whether to address them.

2. Low

Low-risk vulnerabilities are those that either have a small impact or can't be

exploited repeatedly or those the client considers insignificant based on their

specific business circumstances.

3. Medium

Medium-severity vulnerabilities are those caused by weak or flawed logic in the code

and can lead to exfiltration or modification of private user information. These

vulnerabilities can harm the client's reputation under certain conditions and should

be fixed within a specified timeframe.

4. High

High-severity vulnerabilities pose a significant risk to the Smart Contract and the

organization. They can result in the loss of funds for some users, may or may not

require specific conditions, and are more complex to exploit. These vulnerabilities

can harm the client's reputation and should be fixed immediately.

5. Critical

Critical issues are directly exploitable bugs or security vulnerabilities that do not

require specific conditions. They often result in the loss of funds and Ether from

Smart Contracts or users and put sensitive user information at risk of compromise

7



or modification. The client's reputation and financial stability will be severely

impacted if these issues are not addressed immediately.

6. Gas

To address the risk and volatility of smart contracts and the use of gas as a method

of payment, CredShields has introduced a "Gas" severity category. This category

deals with optimizing code and refactoring to conserve gas.

8



2.4 CredShields staff

The following individual at CredShields managed this engagement and produced this

report:

● Shashank, Co-founder CredShields

○ shashank@CredShields.com

Please feel free to contact this individual with any questions or concerns you have around

the engagement or this document.

9



3. Findings
____

This chapter contains the results of the security assessment. Findings are sorted by their

severity and grouped by the asset and SWC classification. Each asset section will include a

summary. The table in the executive summary contains the total number of identified

security vulnerabilities per asset per risk indication.

3.1 Findings Overview

3.1.1 Vulnerability Summary

During the security assessment, One (1) security vulnerabilities were identified in the asset.

VULNERABILITY TITLE SEVERITY SWC | Vulnerability Type

Use Ownable2Step Low Missing Best Practices

Table: Findings in Smart Contracts

10



3.1.2 Findings Summary

SWC ID SWC Checklist Test Result Notes

SWC-100 Function Default Visibility Not
Vulnerable

Not applicable after v0.5.X
(Currently using solidity v >=
0.8.6)

SWC-101 Integer Overflow and Underflow Not
Vulnerable

The issue persists in

versions before v0.8.X.

SWC-102 Outdated Compiler Version Not
Vulnerable

Version 0^.8.0 and above is
used

SWC-103 Floating Pragma Not
Vulnerable

Contract uses floating
pragma

SWC-104 Unchecked Call Return Value Not
Vulnerable

call() is not used

SWC-105 Unprotected Ether Withdrawal Not
Vulnerable

Appropriate function
modifiers and require
validations are used on
sensitive functions that
allow token or ether
withdrawal.

SWC-106 Unprotected SELFDESTRUCT
Instruction

Not
Vulnerable

selfdestruct() is not used
anywhere

SWC-107 Reentrancy Not
Vulnerable

No notable functions were
vulnerable to it.

SWC-108 State Variable Default Visibility Not
Vulnerable

Not Vulnerable

SWC-109 Uninitialized Storage Pointer Not
Vulnerable

Not vulnerable after
compiler version, v0.5.0

11

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://swcregistry.io/docs/SWC-105
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-109


SWC-110 Assert Violation Not
Vulnerable

Asserts are not in use.

SWC-111 Use of Deprecated Solidity
Functions

Not
Vulnerable

None of the deprecated
functions like
block.blockhash(), msg.gas,
throw, sha3(), callcode(),
suicide() are in use

SWC-112 Delegatecall to Untrusted Callee Not
Vulnerable

Not Vulnerable.

SWC-113 DoS with Failed Call Not
Vulnerable

No such function was
found.

SWC-114 Transaction Order Dependence Not
Vulnerable

Not Vulnerable.

SWC-115 Authorization through tx.origin Not
Vulnerable

tx.origin is not used
anywhere in the code

SWC-116 Block values as a proxy for time Not
Vulnerable

Block.timestamp is not used

SWC-117 Signature Malleability Not
Vulnerable

Not used anywhere

SWC-118 Incorrect Constructor Name Not
Vulnerable

All the constructors are
created using the
constructor keyword rather
than functions.

SWC-119 Shadowing State Variables Not
Vulnerable

Not applicable as this won’t
work during compile time
after version 0.6.0

SWC-120 Weak Sources of Randomness
from Chain Attributes

Not
Vulnerable

Random generators are not
used.

SWC-121 Missing Protection against
Signature Replay Attacks

Not
Vulnerable

No such scenario was found

12

https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-118
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-121


SWC-122 Lack of Proper Signature
Verification

Not
Vulnerable

Not used anywhere

SWC-123 Requirement Violation Not
Vulnerable

Not vulnerable

SWC-124 Write to Arbitrary Storage
Location

Not
Vulnerable

No such scenario was found

SWC-125 Incorrect Inheritance Order Not
Vulnerable

No such scenario was found

SWC-126 Insufficient Gas Griefing Not
Vulnerable

No such scenario was found

SWC-127 Arbitrary Jump with Function
Type Variable

Not
Vulnerable

Jump is not used.

SWC-128 DoS With Block Gas Limit Not
Vulnerable

Not Vulnerable.

SWC-129 Typographical Error Not
Vulnerable

No such scenario was found

SWC-130 Right-To-Left-Override control
character (U+202E)

Not
Vulnerable

No such scenario was found

SWC-131 Presence of unused variables Not
Vulnerable

No such scenario was found

SWC-132 Unexpected Ether balance Not
Vulnerable

No such scenario was found

SWC-133 Hash Collisions With Multiple
Variable Length Arguments

Not
Vulnerable

abi.encodePacked() or other
functions are not used.

SWC-134 Message call with hardcoded gas
amount

Not
Vulnerable

Not used anywhere in the
code

SWC-135 Code With No Effects Not
Vulnerable

No such scenario was
found

SWC-136 Unencrypted Private Data
On-Chain

Not
Vulnerable

No such scenario was found

13

https://swcregistry.io/docs/SWC-122
https://swcregistry.io/docs/SWC-122
https://swcregistry.io/docs/SWC-123
https://swcregistry.io/docs/SWC-124
https://swcregistry.io/docs/SWC-124
https://swcregistry.io/docs/SWC-125
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-127
https://swcregistry.io/docs/SWC-127
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-129
https://swcregistry.io/docs/SWC-130
https://swcregistry.io/docs/SWC-130
https://swcregistry.io/docs/SWC-131
https://swcregistry.io/docs/SWC-132
https://swcregistry.io/docs/SWC-133
https://swcregistry.io/docs/SWC-133
https://swcregistry.io/docs/SWC-134
https://swcregistry.io/docs/SWC-134
https://swcregistry.io/docs/SWC-135
https://swcregistry.io/docs/SWC-136
https://swcregistry.io/docs/SWC-136


4. Remediation Status
____

Asset Chain is actively partnering with CredShields from this engagement to validate the

discovered vulnerabilities' remediations. A retest was performed on June 12th, 2024,

and all the issues have been addressed.

Also, the table shows the remediation status of each finding.

VULNERABILITY TITLE SEVERITY REMEDIATION
STATUS

Use Ownable2Step Low Won’t Fix
[12/05/2024]

Table: Summary of findings and status of remediation

14



5. Bug Reports

____

Bug ID #1 [Won’t Fix]

Use Ownable2Step

Vulnerability Type
Missing Best Practices

Severity
Low

Description
The "Ownable2Step" pattern is an improvement over the traditional "Ownable" pattern,
designed to enhance the security of ownership transfer functionality in a smart contract.
Unlike the original "Ownable" pattern, where ownership can be transferred directly to a
specified address, the "Ownable2Step" pattern introduces an additional step in the
ownership transfer process. Ownership transfer only completes when the proposed new
owner explicitly accepts the ownership, mitigating the risk of accidental or unintended
ownership transfers to mistyped addresses.

Affected Code
● https://bscscan.com/address/0xfe9bd67eb9525d4981ad2291d7261501782da24c#c

ode#F1#L16

Impacts
Without the "Ownable2Step" pattern, the contract owner might inadvertently transfer
ownership to an unintended or mistyped address, potentially leading to a loss of control
over the contract. By adopting the "Ownable2Step" pattern, the smart contract becomes
more resilient against external attacks aimed at seizing ownership or manipulating the
contract's behaviour.

15

https://bscscan.com/address/0xfe9bd67eb9525d4981ad2291d7261501782da24c#code#F1#L16
https://bscscan.com/address/0xfe9bd67eb9525d4981ad2291d7261501782da24c#code#F1#L16


Remediation
It is recommended to use either Ownable2Step or Ownable2StepUpgradeable depending
on the smart contract.

Retest:
Since this is not a severe issue, they won't be making changes to the live contracts and
CredShields team agrees with the decision.

16



6. Disclosure

____

The Reports provided by CredShields are not an endorsement or condemnation of any

specific project or team and do not guarantee the security of any specific project. The

contents of this report are not intended to be used to make decisions about buying or

selling tokens, products, services, or any other assets and should not be interpreted as

such.

Emerging technologies such as Smart Contracts and Solidity carry a high level of technical

risk and uncertainty. CredShields does not provide any warranty or representation about

the quality of code, the business model or the proprietors of any such business model, or

the legal compliance of any business. The report is not intended to be used as investment

advice and should not be relied upon as such.

CredShields Audit team is not responsible for any decisions or actions taken by any third

party based on the report.

17


