
CredShields

Smart Contract Audit

Aug 20th, 2024 • CONFIDENTIAL

Description

This document details the process and result of the Smart Contract audit performed by

CredShields Technologies PTE. LTD. on behalf of AssetChain between July 25th, 2024, and

July 29th, 2024. A retest was performed on Aug 13th, 2024.

Author

Shashank (Co-founder, CredShields)

shashank@CredShields.com

Reviewers

Aditya Dixit (Research Team Lead), Shreyas Koli (Auditor), Naman Jain (Auditor), Sanket

Salavi (Auditor)

Prepared for

AssetChain

Table of Contents

1. Executive Summary 3
State of Security 4

2. Methodology 5
2.1 Preparation Phase 5

2.1.1 Scope 6
2.1.2 Documentation 6
2.1.3 Audit Goals 6

2.2 Retesting Phase 7
2.3 Vulnerability classification and severity 7
2.4 CredShields staff 10

3. Findings 11
3.1 Findings Overview 11

3.1.1 Vulnerability Summary 11
3.1.2 Findings Summary 13

4. Remediation Status 17
5. Bug Reports 20

Bug ID #1 [Fixed] 20
Lack of Access Control in WithdrawTokens Function 20

Bug ID #2 [Won’t Fix] 22
Unrestricted Modification of Active Presales 22

Bug ID #3 [Won’t Fix] 23
Missing Validation for Active Presale Status 23

Bug ID #4 [Won’t Fix] 25
Missing Price Feed Validation 25

Bug ID #5 [Won’t Fix] 27
Chainlink Oracle Min/Max price validation 27

Bug ID #6 [Partially Fixed] 28
Use safeTransfer/safeTransferFrom instead of transfer/transferFrom 28

Bug ID #7 [Fixed] 30
Missing Access Control for Withdraw Function 30

Bug ID #8 [Won’t Fix] 31
Use Ownable2Step 31

Bug ID #9 [Won’t Fix] 33

1

Missing Zero Address Validations 33
Bug ID #10 [Won’t Fix] 35

Floating and Outdated Pragma 35
Bug ID #11 [Won’t Fix] 37

Missing Events in Important Functions 37
Bug ID #12 [Fixed] 39

Require with Empty Message 39
Bug ID #13 [Won’t Fix] 40

Dead Code 40
Bug ID #14 [Won’t Fix] 41

Use Call instead of Transfer 41
Bug ID #15 [Won’t Fix] 43

Use Scientific Notations 43
Bug ID #16 [Won’t Fix] 45

Boolean Equality 45
Bug ID #17 [Won’t Fix] 46

Custom error to save gas 46
Bug ID #18 [Won’t Fix] 47

Cheaper Inequalities in if() 47
Bug ID #19 [Won’t Fix] 48

Cheaper Inequalities in require() 48
Bug ID #20 [Won’t Fix] 50

Gas Optimization in Require/Revert Statements 50
Bug ID #21 [Won’t Fix] 52

Cheaper Conditional Operators 52
Bug ID #22 [Won’t Fix] 54

Variables should be Immutable 54
6. Disclosure 56

2

1. Executive Summary

AssetChain engaged CredShields to perform a smart contract audit from July 25th, 2024, to

July 29th, 2024. During this timeframe, 22 vulnerabilities were identified. A retest was

performed on Aug 13th, 2024, and all the bugs have been addressed.

During the audit, 1 vulnerability was found with a severity rating of either High or Critical.

These vulnerabilities represent the greatest immediate risk to "AssetChain" and should be

prioritized for remediation, and fortunately, none were found.

The table below shows the in-scope assets and a breakdown of findings by severity per

asset. Section 2.3 contains more information on how severity is calculated.

Assets in Scope Critical High Medium Low info Gas Σ

Smart Contracts 0 1 4 6 3 8 22

0 1 4 6 3 8 22

Table: Vulnerabilities Per Asset in Scope

The CredShields team conducted the security audit to focus on identifying vulnerabilities in

the Smart Contract’s scope during the testing window while abiding by the policies set forth

by AssetChain’s team.

3

State of Security

To maintain a robust security posture, it is essential to continuously review and improve

upon current security processes. Utilizing CredShields' continuous audit feature allows

both AssetChain's internal security and development teams to not only identify specific

vulnerabilities but also gain a deeper understanding of the current security threat

landscape.

To ensure that vulnerabilities are not introduced when new features are added, or code is

refactored, we recommend conducting regular security assessments. Additionally, by

analyzing the root cause of resolved vulnerabilities, the internal teams at AssetChain can

implement both manual and automated procedures to eliminate entire classes of

vulnerabilities in the future. By taking a proactive approach, AssetChain can future-proof its

security posture and protect its assets.

4

2. Methodology

AssetChain engaged CredShields to perform a Smart Contract audit. The following sections

cover how the engagement was put together and executed.

2.1 Preparation Phase

The CredShields team meticulously reviewed all provided documents and comments in the

smart contract code to gain a thorough understanding of the contract's features and

functionalities. They meticulously examined all functions and created a mind map to

systematically identify potential security vulnerabilities, prioritizing those that were more

critical and business-sensitive for the refactored code. To confirm their findings, the team

deployed a self-hosted version of the smart contract and performed verifications and

validations during the audit phase.

A testing window from July 25th, 2024, to July 29th, 2024, was agreed upon during the

preparation phase.

5

2.1.1 Scope

During the preparation phase, the following scope for the engagement was agreed upon:

IN SCOPE ASSETS

● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE
420

● https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB4
2

Table: List of Files in Scope

2.1.2 Documentation

Documentation was not required as the code was self-sufficient for understanding the

project.

2.1.3 Audit Goals

CredShields uses both in-house tools and manual methods for comprehensive smart

contract security auditing. The majority of the audit is done by manually reviewing the

contract source code, following SWC registry standards, and an extended industry standard

self-developed checklist. The team places emphasis on understanding core concepts,

preparing test cases, and evaluating business logic for potential vulnerabilities.

6

https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42

2.2 Retesting Phase

AssetChain is actively partnering with CredShields to validate the remediations

implemented towards the discovered vulnerabilities.

2.3 Vulnerability classification and severity

CredShields follows OWASP's Risk Rating Methodology to determine the risk associated

with discovered vulnerabilities. This approach considers two factors - Likelihood and Impact

- which are evaluated with three possible values - Low, Medium, and High, based on

factors such as Threat agents, Vulnerability factors, and Technical and Business Impacts.

The overall severity of the risk is calculated by combining the likelihood and impact

estimates.

Overall, the categories can be defined as described below -

1. Informational

We prioritize technical excellence and pay attention to detail in our coding practices.

Our guidelines, standards, and best practices help ensure software stability and

7

reliability. Informational vulnerabilities are opportunities for improvement and do

not pose a direct risk to the contract. Code maintainers should use their own

judgment on whether to address them.

2. Low

Low-risk vulnerabilities are those that either have a small impact or can't be

exploited repeatedly or those the client considers insignificant based on their

specific business circumstances.

3. Medium

Medium-severity vulnerabilities are those caused by weak or flawed logic in the code

and can lead to exfiltration or modification of private user information. These

vulnerabilities can harm the client's reputation under certain conditions and should

be fixed within a specified timeframe.

4. High

High-severity vulnerabilities pose a significant risk to the Smart Contract and the

organization. They can result in the loss of funds for some users, may or may not

require specific conditions, and are more complex to exploit. These vulnerabilities

can harm the client's reputation and should be fixed immediately.

5. Critical

Critical issues are directly exploitable bugs or security vulnerabilities that do not

require specific conditions. They often result in the loss of funds and Ether from

Smart Contracts or users and put sensitive user information at risk of compromise

8

or modification. The client's reputation and financial stability will be severely

impacted if these issues are not addressed immediately.

6. Gas

To address the risk and volatility of smart contracts and the use of gas as a method

of payment, CredShields has introduced a "Gas" severity category. This category

deals with optimizing code and refactoring to conserve gas.

9

2.4 CredShields staff

The following individual at CredShields managed this engagement and produced this

report:

● Shashank, Co-founder CredShields

○ shashank@CredShields.com

Please feel free to contact this individual with any questions or concerns you have about

the engagement or this document.

10

3. Findings

This chapter contains the results of the security assessment. Findings are sorted by their

severity and grouped by the asset and SWC classification. Each asset section will include a

summary. The table in the executive summary contains the total number of identified

security vulnerabilities per asset per risk indication.

3.1 Findings Overview

3.1.1 Vulnerability Summary

During the security assessment, 22 security vulnerabilities were identified in the asset.

Table: Findings in Smart Contracts

VULNERABILITY TITLE SEVERITY SWC | Vulnerability Type

Lack of Access Control in
WithdrawTokens Function

High Access Control

Unrestricted Modification of Active
Presales

Medium Business Logic

Missing Validation for Active Presale
Status

Medium Business Logic

Missing Price Feed Validation Medium Input Validation

Chainlink Oracle Min/Max price
validation

Medium Input Validation

11

Use safeTransfer/safeTransferFrom
instead of transfer/transferFrom

Low Missing Best Practices

Missing Access Control for Withdraw
Function

Low Access Control

Use Ownable2Step Low Missing best practices

Missing Zero Address Validations Low Input Validation

Floating and Outdated Pragma Low Floating Pragma (SWC-103)

Missing Events in Important Functions Low Missing Best Practices

Require with Empty Message Informational Code optimization

Dead Code Informational Code With No Effects -
SWC-135

Use Call instead of Transfer Informational Missing Best Practices

Use Scientific Notations Gas Gas & Missing Best
Practices

Boolean Equality Gas Gas Optimization

Custom error to save gas Gas Gas Optimization

Cheaper Inequalities in if() Gas Gas Optimization

Cheaper Inequalities in require() Gas Gas Optimization

Gas Optimization in Require/Revert
Statements

Gas Gas Optimization

12

Cheaper Conditional Operators Gas Gas Optimization

Variables should be Immutable Gas Gas Optimization

3.1.2 Findings Summary

SWC ID SWC Checklist Test Result Notes

SWC-100 Function Default Visibility Not
Vulnerable

Not applicable after v0.5.X
(Currently using solidity v >=
0.8.6)

SWC-101 Integer Overflow and Underflow Not
Vulnerable

The issue persists in

versions before v0.8.X.

SWC-102 Outdated Compiler Version Vulnerable Bug ID #10

SWC-103 Floating Pragma Vulnerable Bug ID #10

SWC-104 Unchecked Call Return Value Not
Vulnerable

call() is not used

SWC-105 Unprotected Ether Withdrawal Not
Vulnerable

Appropriate function
modifiers and require
validations are used on
sensitive functions that
allow token or ether
withdrawal.

SWC-106 Unprotected SELFDESTRUCT
Instruction

Not
Vulnerable

selfdestruct() is not used
anywhere

SWC-107 Reentrancy Not
Vulnerable

No notable functions were
vulnerable to it.

SWC-108 State Variable Default Visibility Not
Vulnerable

Not Vulnerable

13

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://swcregistry.io/docs/SWC-105
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-108

SWC-109 Uninitialized Storage Pointer Not
Vulnerable

Not vulnerable after
compiler version, v0.5.0

SWC-110 Assert Violation Not
Vulnerable

Asserts are not in use.

SWC-111 Use of Deprecated Solidity
Functions

Not
Vulnerable

None of the deprecated
functions like
block.blockhash(), msg.gas,
throw, sha3(), callcode(),
suicide() are in use

SWC-112 Delegatecall to Untrusted Callee Not
Vulnerable

Not Vulnerable.

SWC-113 DoS with Failed Call Not
Vulnerable

No such function was
found.

SWC-114 Transaction Order Dependence Not
Vulnerable

Not Vulnerable.

SWC-115 Authorization through tx.origin Not
Vulnerable

tx.origin is not used
anywhere in the code

SWC-116 Block values as a proxy for time Not
Vulnerable

Block.timestamp is not used

SWC-117 Signature Malleability Not
Vulnerable

Not used anywhere

SWC-118 Incorrect Constructor Name Not
Vulnerable

All the constructors are
created using the
constructor keyword rather
than functions.

SWC-119 Shadowing State Variables Not
Vulnerable

Not applicable as this won’t
work during compile time
after version 0.6.0

SWC-120 Weak Sources of Randomness
from Chain Attributes

Not
Vulnerable

Random generators are not
used.

14

https://swcregistry.io/docs/SWC-109
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-118
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-120

SWC-121 Missing Protection against
Signature Replay Attacks

Not
Vulnerable

No such scenario was found

SWC-122 Lack of Proper Signature
Verification

Not
Vulnerable

Not used anywhere

SWC-123 Requirement Violation Not
Vulnerable

Not vulnerable

SWC-124 Write to Arbitrary Storage
Location

Not
Vulnerable

No such scenario was found

SWC-125 Incorrect Inheritance Order Not
Vulnerable

No such scenario was found

SWC-126 Insufficient Gas Griefing Not
Vulnerable

No such scenario was found

SWC-127 Arbitrary Jump with Function
Type Variable

Not
Vulnerable

Jump is not used.

SWC-128 DoS With Block Gas Limit Not
Vulnerable

Not Vulnerable.

SWC-129 Typographical Error Not
Vulnerable

No such scenario was found

SWC-130 Right-To-Left-Override control
character (U+202E)

Not
Vulnerable

No such scenario was found

SWC-131 Presence of unused variables Not
Vulnerable

No such scenario was found

SWC-132 Unexpected Ether balance Not
Vulnerable

No such scenario was found

SWC-133 Hash Collisions With Multiple
Variable Length Arguments

Not
Vulnerable

abi.encodePacked() or other
functions are not used.

SWC-134 Message call with hardcoded gas
amount

Not
Vulnerable

Not used anywhere in the
code

SWC-135 Code With No Effects Vulnerable Bug ID #13

15

https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://swcregistry.io/docs/SWC-122
https://swcregistry.io/docs/SWC-123
https://swcregistry.io/docs/SWC-124
https://swcregistry.io/docs/SWC-124
https://swcregistry.io/docs/SWC-125
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-127
https://swcregistry.io/docs/SWC-127
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-129
https://swcregistry.io/docs/SWC-130
https://swcregistry.io/docs/SWC-130
https://swcregistry.io/docs/SWC-131
https://swcregistry.io/docs/SWC-132
https://swcregistry.io/docs/SWC-133
https://swcregistry.io/docs/SWC-133
https://swcregistry.io/docs/SWC-134
https://swcregistry.io/docs/SWC-134
https://swcregistry.io/docs/SWC-135

SWC-136 Unencrypted Private Data
On-Chain

Not
Vulnerable

No such scenario was found

16

https://swcregistry.io/docs/SWC-136
https://swcregistry.io/docs/SWC-136

4. Remediation Status

AssetChain is actively partnering with CredShields from this engagement to validate the

remediation of the discovered vulnerabilities. A retest was performed on Aug 13th, 2024,

and all the issues have been addressed.

Also, the table shows the remediation status of each finding.

VULNERABILITY TITLE SEVERITY REMEDIATION
STATUS

Lack of Access Control in WithdrawTokens
Function

High Fixed
[Aug 13th, 2024]

Unrestricted Modification of Active Presales Medium Won’t Fix
[Aug 13th, 2024]

Missing Validation for Active Presale Status Medium Won’t Fix
[Aug 13th, 2024]

Missing Price Feed Validation Medium Won’t Fix
[Aug 13th, 2024]

Chainlink Oracle Min/Max price validation Medium Won’t Fix
[Aug 13th, 2024]

Use safeTransfer/safeTransferFrom instead of
transfer/transferFrom

Low Partially Fixed
[Aug 13th, 2024]

Missing Access Control for Withdraw Function Low Fixed
[Aug 13th, 2024]

Use Ownable2Step Low Won’t Fix
[Aug 13th, 2024]

17

Missing Zero Address Validations Low Won’t Fix
[Aug 13th, 2024]

Floating and Outdated Pragma Low Won’t Fix
[Aug 13th, 2024]

Missing Events in Important Functions Low Won’t Fix
[Aug 13th, 2024]

Require with Empty Message Informational Fixed
[Aug 13th, 2024]

Dead Code Informational Won’t Fix
[Aug 13th, 2024]

Use Call instead of Transfer Informational Won’t Fix
[Aug 13th, 2024]

Use Scientific Notations Gas Won’t Fix
[Aug 13th, 2024]

Boolean Equality Gas Won’t Fix
[Aug 13th, 2024]

Custom error to save gas Gas Won’t Fix
[Aug 13th, 2024]

Cheaper Inequalities in if() Gas Won’t Fix
[Aug 13th, 2024]

Cheaper Inequalities in require() Gas Won’t Fix
[Aug 13th, 2024]

Gas Optimization in Require/Revert Statements Gas Won’t Fix
[Aug 13th, 2024]

Cheaper Conditional Operators Gas Won’t Fix
[Aug 13th, 2024]

18

Variables should be Immutable Gas Won’t Fix
[Aug 13th, 2024]

Table: Summary of findings and status of remediation

19

5. Bug Reports

Bug ID #1 [Fixed]

Lack of Access Control in WithdrawTokens Function

Vulnerability Type
Access Control

Severity
High

Description
The WithdrawTokens() function in the sale contract allows any user to withdraw tokens
from the contract and send them to the fundReceiver address. This function lacks proper
access control, meaning it can be invoked by any user. As a result, a malicious actor could
exploit this function to transfer all the tokens in the contract to the fundReceiver
address, effectively emptying the contract's token balance.

Furthermore, if the contract allows users to buy tokens using USDT through the
buyWithUSDT function, this lack of access control could prevent legitimate users from
purchasing tokens, as the contract's token balance could be transferred to fundReceiver.

Affected Code
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L927

Impacts

20

https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L927
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L927

User can drain the contract of all tokens by invoking the WithdrawTokens() function,
sending the tokens to the fundReceiver address. If tokens are drained, legitimate users
attempting to buy tokens using USDT will be unable to buy tokens.

Remediation
It is recommended to restrict access to the WithdrawTokens() function by implementing
an access control mechanism, such as the onlyOwner modifier or a similar role-based
access control mechanism

Retest
This issue has been fixed by adding onlyOwner modifier

21

Bug ID #2 [Won’t Fix]

Unrestricted Modification of Active Presales

Vulnerability Type
Logic Flow

Severity
Medium

Description
The updatePresale() function allows the modification of critical parameters (price, next
stage price, tokens to sell, and hardcap) for any presale identified by _id, including those
that are already active or have ended. This functionality can be abused to alter the terms of
an ongoing or past presale, which can lead to unfair practices and potential financial
manipulation.

Affected Code
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L697

Impacts
Allowing modifications to active or past presales can undermine the integrity of the presale
process. Participants in an ongoing presale might face unexpected changes in terms.

Remediation
Implement a validation check within the updatePresale() function to ensure that
modifications are only allowed for upcoming presales that have not yet started. This can be
done by checking the Active status of the presale before allowing any updates.

Retest
This issue has not been fixed. It is recommended to fix as mentioned in Remediation.

22

https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L697
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L697

Bug ID #3 [Won’t Fix]

Missing Validation for Active Presale Status

Vulnerability Type
Business Logic

Severity
Medium

Description
The startPresale() function in the provided smart contract code lacks validation to
check whether the presale is already active. This allows the function to be called multiple
times, each time overwriting the startTime and potentially manipulating the presale
period.

Affected Code
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L669

Impacts
If the startPresale function is called multiple times, it can reset the startTime to the
current block timestamp and keep the presale active indefinitely.

Remediation
Implement a validation check within the startPresale() function to ensure that it cannot
be called if the presale is already active. This can be done by adding a simple condition to
verify the Active status before proceeding with the function logic. Eg:

function startPresale() public onlyOwner {
require(!presale[presaleId].Active, "Presale is already active");
presale[presaleId].startTime = block.timestamp;
presale[presaleId].Active = true;

23

https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L669
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L669

}

Retest
This issue has not been fixed. It is recommended to add a validation to make sure that
presale is not active.

24

Bug ID #4 [Won’t Fix]

Missing Price Feed Validation

Vulnerability Type
Input Validation

Severity
Medium

Description
Chainlink has a library AggregatorV3Interface with a function called
latestRoundData(). This function returns the price feed among other details for the
latest round.
The contract was found to be using latestRoundData() without proper input validations
on the returned parameters which might result in a stale and outdated price.

Vulnerable Code
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L758

Impacts
Having oracles with functions to fetch price feed without any validation might introduce
erroneous or invalid price values that could result in an invalid price calculation further in
the contract.

Remediation

It is recommended to have input validations for all the parameters obtained from the
Chainlink price feed. Here’s a sample implementation:

(uint80 roundID ,int256 price, uint256 timestamp, uint80 answeredInRound) =
AggregatorV3Interface(chainLinkAggregatorMap[underlying]).latestRoundData();

25

https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L758
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L758

require(answer > 0, "Chainlink price <= 0");
require(answeredInRound >= roundID, "Stale price");
require(timestamp != 0, "Round not complete");

Retest
This issue has not been fixed. It is recommended to fix as mentioned in Remediation.

26

Bug ID #5 [Won’t Fix]

Chainlink Oracle Min/Max price validation

Vulnerability Type
Input Validation

Severity
Medium

Description
Chainlink has a library AggregatorV3Interface with a function called
latestRoundData(). This function returns the price feed among other details for the
latest round.
Chainlink aggregators have a built in circuit breaker if the price of an asset goes outside of
a predetermined price band. The result is that if an asset experiences a huge drop in value,
the price of the oracle will continue to return the minPrice instead of the actual price of the
asset.

Vulnerable Code
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L758

Impacts
This would allow user to store their allocations with the asset but at the wrong price.

Remediation
The contract should check the returned answer/price against the minPrice/maxPrice and
revert if the answer is outside of the bounds.

if (answer >= maxPrice or answer <= minPrice) revert(); // eg

Retest
This issue has not been fixed. It is recommended to fix as mentioned in Remediation.

27

https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L758
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L758

Bug ID #6 [Partially Fixed]

Use safeTransfer/safeTransferFrom instead of
transfer/transferFrom

Vulnerability Type
Missing best practices

Severity
Low

Description
The transfer() and transferFrom() method is used instead of safeTransfer() and
safeTransferFrom(), presumably to save gas however OpenZeppelin’s documentation
discourages the use of transferFrom(), use safeTransferFrom() whenever possible because
safeTransferFrom auto-handles boolean return values whenever there’s an error.

Affected Code
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L928
● https://bscscan.com/address/0xba4f808c6746f38e3833c63312dc4790c16fcb42#cod

e#L52
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L833

Impacts
Using safeTransferFrom has the following benefits -

● It checks the boolean return values of ERC20 operations and reverts the transaction
if they fail,

● at the same time allowing you to support some non-standard ERC20 tokens that
don’t have boolean return values.

● It additionally provides helpers to increase or decrease an allowance, to mitigate an
attack possible with vanilla approve.

28

https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L928
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L928
https://bscscan.com/address/0xba4f808c6746f38e3833c63312dc4790c16fcb42#code#L52
https://bscscan.com/address/0xba4f808c6746f38e3833c63312dc4790c16fcb42#code#L52
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L833
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L833

Remediation
Consider using safeTransfer() and safeTransferFrom() instead of transfer() and
transferFrom().

Retest
This issue has been partially fixed.

29

Bug ID #7 [Fixed]

Missing Access Control for Withdraw Function

Vulnerability Type
Access Control

Severity
Low

Description
The WithdrawContractFunds() function lacks access control, allowing any external
account to call this function and initiate the transfer of funds. Although the function
transfers funds only to the fundReceiver, which is the owner.

Affected Code
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L931

Impacts
In scenarios where the owner relies on specific triggers for withdrawals, this vulnerability
could cause premature or unexpected fund transfers.

Remediation
In scenarios where the owner relies on specific triggers for withdrawals, this vulnerability
could cause premature or unexpected fund transfers.

Retest
This issue has been fixed by adding onlyOwner modifier.

30

https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L931
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L931

Bug ID #8 [Won’t Fix]

Use Ownable2Step

Vulnerability Type
Missing Best Practices

Severity
Low

Description
The "Ownable2Step" pattern is an improvement over the traditional "Ownable" pattern,
designed to enhance the security of ownership transfer functionality in a smart contract.
Unlike the original "Ownable" pattern, where ownership can be transferred directly to a
specified address, the "Ownable2Step" pattern introduces an additional step in the
ownership transfer process. Ownership transfer only completes when the proposed new
owner explicitly accepts the ownership, mitigating the risk of accidental or unintended
ownership transfers to mistyped addresses.

Affected Code
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L537
● https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#co

de#L13

Impacts
Without the "Ownable2Step" pattern, the contract owner might inadvertently transfer
ownership to an unintended or mistyped address, potentially leading to a loss of control
over the contract. By adopting the "Ownable2Step" pattern, the smart contract becomes
more resilient against external attacks aimed at seizing ownership or manipulating the
contract's behavior.

Remediation

31

https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L537
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L537
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L13
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L13

It is recommended to use either Ownable2Step or Ownable2StepUpgradeable depending
on the smart contract.

Retest
This issue has not been fixed. It is recommended to fix as mentioned in Remediation.

32

Bug ID #9 [Won’t Fix]

Missing Zero Address Validations

Vulnerability Type
Missing Input Validation

Severity
Low

Description
The contracts were found to be setting new addresses without proper validations for zero
addresses.
Address type parameters should include a zero-address check otherwise contract
functionality may become inaccessible or tokens burned forever.
Depending on the logic of the contract, this could prove fatal and the users or the contracts
could lose their funds, or the ownership of the contract could be lost forever.

Affected Variables and Line Numbers
● https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#co

de#L33
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L620
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L631
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L621
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L622
●

Impacts
If address type parameters do not include a zero-address check, contract functionality may
become unavailable or tokens may be burned permanently.

33

https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L33
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L33
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L620
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L620
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L631
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L631
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L621
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L621
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L622
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L622

Remediation
Add a zero address validation to all the functions where addresses are being set.

Retest
This issue has not been fixed. It is recommended to fix this as mentioned in Remediation.

34

Bug ID #10 [Won’t Fix]

Floating and Outdated Pragma

Vulnerability Type
Floating Pragma (SWC-103)

Severity
Low

Description
Locking the pragma helps ensure that the contracts do not accidentally get deployed using
an older version of the Solidity compiler affected by vulnerabilities.

The contract allowed floating or unlocked pragma to be used, i.e., ^0.8.0, ^0.8.19. This
allows the contracts to be compiled with all the solidity compiler versions above the limit
specified. The following contracts were found to be affected -

Affected Code
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L6
● https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#co

de#L6
Impacts
If the smart contract gets compiled and deployed with an older or too recent version of the
solidity compiler, there’s a chance that it may get compromised due to the bugs present in
the older versions or unidentified exploits in the new versions.
Incompatibility issues may also arise if the contract code does not support features in other
compiler versions, therefore, breaking the logic.
The likelihood of exploitation is low.

Remediation
Keep the compiler versions consistent in all the smart contract files. Do not allow floating
pragmas anywhere. It is suggested to use the 0.8.25 pragma version
Reference: https://swcregistry.io/docs/SWC-103

35

https://swcregistry.io/docs/SWC-103
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L6
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L6
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L6
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L6
https://swcregistry.io/docs/SWC-103

Retest
This issue has not been fixed. It is recommended to fix as mentioned in Remediation.

36

Bug ID #11 [Won’t Fix]

Missing Events in Important Functions

Vulnerability Type
Missing Best Practices

Severity
Low

Description
Events are inheritable members of contracts. When you call them, they cause the
arguments to be stored in the transaction’s log — a special data structure in the blockchain.
These logs are associated with the address of the contract which can then be used by
developers and auditors to keep track of the transactions.

The contract was found to be missing these events on certain critical functions which would
make it difficult or impossible to track these transactions off-chain.

Affected Code
The following functions were affected -

● https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#co
de#L36

● https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#co
de#L40

● https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#co
de#L44

● https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#co
de#L48

● https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#co
de#L55

● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c
ode#L630

37

https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L36
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L36
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L40
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L40
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L44
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L44
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L48
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L48
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L55
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L55
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L630
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L630

● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c
ode#L634

● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c
ode#L669

● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c
ode#L674

● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c
ode#L684

● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c
ode#L697

● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c
ode#L717

● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c
ode#L726

● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c
ode#L782

● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c
ode#L927

● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c
ode#L931

Impacts
Events are used to track the transactions off-chain and missing these events on critical
functions makes it difficult to audit these logs if they’re needed at a later stage.

Remediation
Consider emitting events for important functions to keep track of them.

Retest
This issue has not been fixed. It is recommended to fix as mentioned in Remediation.

38

https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L634
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L634
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L669
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L669
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L674
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L674
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L684
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L684
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L697
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L697
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L717
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L717
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L726
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L726
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L782
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L782
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L927
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L927
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L931
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L931

Bug ID #12 [Fixed]

Require with Empty Message

Vulnerability Type
Code optimization

Severity
Informational

Description
During analysis; multiple require statements were detected with empty messages. The
statement takes two parameters, and the message part is optional. This is shown to the
user when and if the require statement evaluates to false. This message gives more
information about the conditional and why it gave a false response.

Affected Code
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L799

Impacts
Having a short descriptive message in the require statement gives users and developers
more details as to why the conditional statement failed and helps in debugging the
transactions.

Remediation
It is recommended to add a descriptive message, no longer than 32 bytes, inside the
require statement to give more detail to the user about why the condition failed.

Retest
This issue has been fixed by adding a message in require statement.

39

https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L799
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L799

Bug ID #13 [Won’t Fix]

Dead Code

Vulnerability Type
Code With No Effects - SWC-135

Severity
Informational

Description
It is recommended to keep the production repository clean to prevent confusion and the
introduction of vulnerabilities. The functions and parameters, contracts, and interfaces that
are never used or called externally or from inside the contracts should be removed when
the contract is deployed on the mainnet.

Affected Code
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L568

Impacts
This does not impact the security aspect of the Smart contract but prevents confusion
when the code is sent to other developers or auditors to understand and implement.
This reduces the overall size of the contracts and also helps in saving gas.

Remediation
If the library functions are not supposed to be used anywhere, consider removing them
from the contract.

Retest
This issue has not been fixed. It is recommended to fix as mentioned in Remediation.

40

https://swcregistry.io/docs/SWC-135
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L568
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L568

Bug ID #14 [Won’t Fix]

Use Call instead of Transfer

Vulnerability Type
Best Practices

Severity
Informational

Description:
Using Solidity's transfer function has some notable shortcomings when the withdrawer is a
smart contract, which can render ETH deposits impossible to withdraw. Specifically, the
withdrawal will inevitably fail when:

● The withdrawer smart contract does not implement a payable fallback function.
● The withdrawer smart contract implements a payable fallback function which uses

more than 2300 gas units.
● The withdrawer smart contract implements a payable fallback function which needs

less than 2300 gas units but is called through a proxy that raises the call’s gas usage
above 2300.

Affected Code
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L907

Impacts
The transfer function has some restrictions when it comes to sending ETH to contracts in
terms of gas which could lead to transfer failure in some cases.

Remediation
It is recommended to transfer ETH using the call() function, handle the return value using
require statement, and use the nonreentrant modifier wherever necessary to prevent
reentrancy.
Ref: https://solidity-by-example.org/sending-ether/

41

https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L907
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L907
https://solidity-by-example.org/sending-ether/

Retest
This issue has not been fixed. It is recommended to fix as mentioned in Remediation.

42

Bug ID #15 [Won’t Fix]

Use Scientific Notations

Vulnerability Type
Gas & Missing Best Practices

Severity
Gas

Description
Solidity supports multiple rational and integer literals, including decimal fractions and
scientific notations. The use of very large numbers with too many digits was detected in the
code that could have been optimized using a different notation also supported by Solidity.

Affected Code
● https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#co

de#L16
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L625
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L626

Impacts
Having a large number literals in the code increases the gas usage of the contract during its
deployment and when the functions are used or called from the contract.
It also makes the code harder to read and audit and increases the chances of introducing
code errors.

Remediation
Scientific notation in the form of 2e10 is also supported, where the mantissa can be
fractional, but the exponent has to be an integer. The literal MeE is equivalent to M *
10**E. Examples include 2e10, 2e10, 2e-10, 2.5e1, as suggested in official solidity
documentation.

43

https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L16
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L16
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L625
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L625
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L626
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L626

https://docs.soliditylang.org/en/latest/types.html#rational-and-integer-literals
It is recommended to use numbers in the form “35 * 1e7 * 1e18” or “35 * 1e25”.
The numbers can also be represented by using underscores between them to make them
more readable such as “35_00_00_000”

Retest
This issue has not been fixed. It is recommended to fix as mentioned in Remediation.

44

https://docs.soliditylang.org/en/latest/types.html#rational-and-integer-literals

Bug ID #16 [Won’t Fix]

Boolean Equality

Vulnerability Type
Gas Optimization

Severity
Gas

Description
The contract was found to be equating variables with a boolean constant inside a
“require()” statement which is not recommended and is unnecessary. Boolean constants
can be used directly in conditionals.

Affected Code
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L649
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L798
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L806

Impacts
Equating the values to boolean constants in conditions cost gas and can be used directly.

Remediation
It is recommended to use boolean constants directly. It is not required to equate them to
true or false.

Retest
This issue has not been fixed. It is recommended to fix as mentioned in Remediation.

45

https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L649
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L649
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L798
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L798
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L806
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L806

Bug ID #17 [Won’t Fix]

Custom error to save gas

Vulnerability Type
Gas Optimization

Severity
Gas

Description
During code analysis, it was observed that the smart contract is using the revert()
statements for error handling. However, since Solidity version 0.8.4, custom errors have
been introduced, providing a better alternative to the traditional revert(). Custom errors
allow developers to pass dynamic data along with the revert, making error handling more
informative and efficient. Furthermore, using custom errors can result in lower gas costs
compared to the revert() statements.

Affected Code
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L411

Impacts
Custom errors allow developers to provide more descriptive error messages with dynamic
data. This provides better insights into the cause of the error, making it easier for users and
developers to understand and address issues.

Remediation
It is recommended to replace all the instances of revert() statements with error() to save
gas.

Retest
This issue has not been fixed. It is recommended to fix as mentioned in Remediation.

46

https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L411
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L411

Bug ID #18 [Won’t Fix]

Cheaper Inequalities in if()

Vulnerability Type
Gas Optimization

Severity
Gas

Description
The contract was found to be doing comparisons using inequalities inside the “if”
statement. When inside the “if” statements, non-strict inequalities (>=, <=) are usually
cheaper than the strict equalities (>, <).

Affected Code
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L403
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L811

Impacts
Using strict inequalities inside “if” statements costs more gas.

Remediation
It is recommended to go through the code logic, and, if possible, modify the strict
inequalities with the non-strict ones to save gas as long as the logic of the code is not
affected.

Retest
This issue has not been fixed. It is recommended to fix as mentioned in Remediation.

47

https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L403
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L403
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L811
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L811

Bug ID #19 [Won’t Fix]

Cheaper Inequalities in require()

Vulnerability Type
Gas Optimization

Severity
Gas

Description
The contract was found to be performing comparisons using inequalities inside the require
statement. When inside the require statements, non-strict inequalities (>=, <=) are usually
costlier than strict equalities (>, <).

Affected Code
● https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#co

de#L56
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L304
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L799
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L807
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L826
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L906
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L918

Impacts
Using non-strict inequalities inside “require” statements costs more gas.

48

https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L56
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L56
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L304
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L304
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L799
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L799
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L807
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L807
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L826
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L826
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L906
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L906
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L918
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L918

Remediation
It is recommended to go through the code logic, and, if possible, modify the non-strict
inequalities with the strict ones to save gas as long as the logic of the code is not affected.

Retest
This issue has not been fixed. It is recommended to fix as mentioned in Remediation.

49

Bug ID #20 [Won’t Fix]

Gas Optimization in Require/Revert Statements

Vulnerability Type
Gas Optimization

Severity
Gas

Description
The require/revert statement takes an input string to show errors if the validation fails.
The strings inside these functions that are longer than 32 bytes require at least one
additional MSTORE, along with additional overhead for computing memory offset and
other parameters. For this purpose, having strings lesser than 32 bytes saves a significant
amount of gas.

Affected Code
● https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#co

de#L49
● https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#co

de#L56
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L826

Impacts
Having longer require/revert strings than 32 bytes cost a significant amount of gas.

Remediation
It is recommended to shorten the strings passed inside require/revert statements to fit
under 32 bytes. This will decrease the gas usage at the time of deployment and at runtime
when the validation condition is met.

Retest

50

https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L49
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L49
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L56
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L56
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L826
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L826

This issue has not been fixed. It is recommended to fix as mentioned in Remediation.

51

Bug ID #21 [Won’t Fix]

Cheaper Conditional Operators

Vulnerability Type
Gas Optimization

Severity
Gas

Description
Upon reviewing the code, it has been observed that the contract uses conditional
statements involving comparisons with unsigned integer variables. Specifically, the contract
employs the conditional operators x != 0 and x > 0 interchangeably. However, it's important
to note that during compilation, x != 0 is generally more cost-effective than x > 0 for
unsigned integers within conditional statements.

Affected Code
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L647
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L648
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L704
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L705
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L811

Impacts
Employing x != 0 in conditional statements can result in reduced gas consumption
compared to using x > 0. This optimization contributes to cost-effectiveness in contract
interactions.

52

https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L647
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L647
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L648
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L648
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L704
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L704
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L705
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L705
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L811
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L811

Remediation
Whenever possible, use the x != 0 conditional operator instead of x > 0 for unsigned integer
variables in conditional statements.

Retest
This issue has not been fixed. It is recommended to fix as mentioned in Remediation.

53

Bug ID #22 [Won’t Fix]

Variables should be Immutable

Vulnerability Type
Gas Optimization

Severity
Gas

Description
Declaring state variables that are not updated following deployment as immutable can save
gas costs in smart contract deployments and function executions. Immutable state
variables are those that cannot be changed once they are initialized, and their values are
set permanently.

By declaring state variables as immutable, the compiler can optimize their storage in a way
that reduces gas costs. Specifically, the compiler can store the value directly in the
bytecode of the contract, rather than in storage, which is a more expensive operation.

Affected Code
● https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#co

de#L14
● https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#co

de#L15
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L539
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L540
● https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#c

ode#L563

Impacts

54

https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L14
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L14
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L15
https://bscscan.com/address/0xbA4f808c6746F38E3833c63312dc4790c16fcB42#code#L15
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L539
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L539
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L540
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L540
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L563
https://bscscan.com/address/0xb5e425dA77922E1Ae63B43B0B9a08c9ed87FE420#code#L563

Gas usage is increased if the variables that are not updated outside of the constructor are
not set as immutable.

Remediation
An “immutable” attribute should be added in the parameters that are never updated outside
of the constructor to save the gas.

Retest
This issue has not been fixed. It is recommended to fix as mentioned in Remediation.

55

6. Disclosure

The Reports provided by CredShields is not an endorsement or condemnation of any

specific project or team and do not guarantee the security of any specific project. The

contents of this report are not intended to be used to make decisions about buying or

selling tokens, products, services, or any other assets and should not be interpreted as

such.

Emerging technologies such as Smart Contracts and Solidity carry a high level of technical

risk and uncertainty. CredShields does not provide any warranty or representation about

the quality of code, the business model or the proprietors of any such business model, or

the legal compliance of any business. The report is not intended to be used as investment

advice and should not be relied upon as such.

CredShields Audit team is not responsible for any decisions or actions taken by any third

party based on the report.

56

